Synthesis and chiroptical properties of pseudocolchicine and neocolchicine, novel unnatural regioisomers of colchicine

Marino Cavazza, ${ }^{* a}$ Maurizio Zandomeneghi ${ }^{a}$ and Francesco Pietra ${ }^{b}$
${ }^{a}$ Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56100 Pisa, Italy. E-mail: marcav@dcci.unipi; Fax: +039-050-20237
${ }^{b}$ Centro Linceo Interdisciplinare 'B. Segre', Via della Lungara 10, 00165 Roma, Italy

Received (in Cambridge, UK) 5th October 2001, Accepted 18th December 2001
First published as an Advance Article on the web 17th January 2002

Abstract

Two novel regioisomers of colchicine 1, pseudocolchicine ($\left(R_{\mathrm{a}}, 7 S\right)$ - N-(1,2,3,11-tetramethoxy-10-oxo-5,6,7,10tetrahydrobenzo[a]heptalen- 7 -yl)acetamide 11) and neocolchicine ($\left(R_{\mathrm{a}}, 7 S\right)$ - N-($1,2,3,10$-tetramethoxy-11-oxo-5,6,7,11-tetrahydrobenzo [a]heptalen-7-yl)acetamide 13), were obtained from 10-hydroxyneocolchicide $\mathbf{1 5}$ by either treatment with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ followed by HPLC separation, or treatment with tosyl chloride followed by TLC separation of the resulting tosylates $\mathbf{1 6}$ and $\mathbf{1 7}$ and their regiospecific methoxylation with $\mathrm{Ti}(\mathrm{OMe})_{4}$. The observation of similar UV and CD spectra for $\mathbf{1 1}$ and $\mathbf{1 3}$, and for colchicine $\mathbf{1}$ and isocolchicine $\mathbf{6}$, allowed us to come to a far reaching rationalisation of the electronic spectral behaviour of colchicinoids.

Introduction

The cycloheptatrienone nucleus bearing a nucleofuge shows complex behaviour towards nucleophiles. Besides ipso substitution of the nucleofuge, attack at other cycloheptatrienone carbons has been observed, followed by either protonation and elimination of the nucleofuge or ring contraction to a benzenoid derivative. ${ }^{1}$
This dual behaviour was also observed for the cycloheptatrienone nucleus incorporated into the colchicinoids, although fusion into a tricyclic structure restricted the possible reaction modes. ${ }^{2}$ A case-in-point is the reaction of isocolchicine 6-an unnatural isomer of colchicine 1-with sodium methanethiolate in aqueous methanol, by which Velluz and Muller originally obtained two products. The minor product was described as 9 -methylthioisocolchicide 7, while no structure was assigned to the main product, called pseudothiocolchicine. ${ }^{3}$ The structure of the latter, 11-methylthioisocolchicide, was elucidated thirty years later. ${ }^{4}$

In the next decade, appraisal of the stereochemistry of colchicinoids (pseudothiocolchicine being subsequently described as ($R_{\mathrm{a}}, 7 S$)- N-(1,2,3-trimethoxy-10-oxo-11-methyl-thio-5,6,7,10-tetrahydrobenzo [a]heptalen-7-yl)acetamide 10), and clarification of Velluz and Muller's process, ${ }^{3}$ allowed us to carry out the refunctionalization of 9 -substituted isocolchicides at $\mathrm{C}(11)$ with amines and thiolates, and obtain the novel series of 11 -amino and the 11-alkyl(aryl)thio colchicinoids. ${ }^{2,5,6}$ Interestingly, 11-substituted isocolchicides exist as stable and isolatable $\left(R_{\mathrm{a}}, 7 S\right)$ - and ($S_{\mathrm{a}}, 7 S$)-atropisomers, which allowed us to record for the first time dichroic spectra of atropisomeric colchicinoids bearing the natural acetylamino group at $\mathrm{C}(7) .{ }^{7}$ Previously described atropisomeric colchicinoids suffered from either the presence of an anchoring group ${ }^{8}$ at $\mathrm{C}(7)$ or the removal of the $\mathrm{C}(7)$ functionality. ${ }^{9}$ Further still from our true atropisomeric colchicinoids are those cases in which the central ring is enlarged. ${ }^{10}$
The existence of atropisomers may have a bearing on the behaviour of colchicine towards tubulin, although this is still awaiting full clarification. ${ }^{7}$ Help with respect to this may be expected from the examination of the chemical and biological behaviour of other regioisomers of colchicine besides the

$$
\begin{array}{ll}
\left(R_{a}, 7 S\right)-1 & X=\mathrm{H}, \mathrm{Y}=\mathrm{OMe} \\
\left(R_{a}, 7 S\right)-2 & X=\mathrm{H}, \quad \mathrm{Y}=\mathrm{NH} \\
2
\end{array}
$$

$\left(R_{a}, 7 S\right)-13 X=O M e$
$\left(R_{a}, 7 S\right)-14 X=\mathrm{NH}_{2}$

$$
\left(R_{\mathrm{a}}, 7 \mathrm{~S}\right)-14 \quad \mathrm{X}=\mathrm{NH}_{2}
$$

known isocolchicine. Two of these regioisomers are described here together with their UV and CD spectra: pseudocolchicine ($\left(R_{\mathrm{a}}, 7 S\right)$ - N-(1,2,3,11-tetramethoxy-10-oxo-5,6,7,10-tetrahydrobenzo $[a]$ heptalen-7-yl)acetamide 11), which is the prototype of the $\mathrm{C}(11)$ functionalized series, and neocolchicine $\left(\left(R_{\mathrm{a}}, 7 S\right)\right.$ -N-(1,2,3,10-tetramethoxy-11-oxo-5,6,7,11-tetrahydrobenzo $[a]$ -heptalen-7-yl)acetamide, 13), which is the prototype for a new class of colchicinoids.

Results and discussion

It is known that both colchicine $\mathbf{1}$ and isocolchicine $\mathbf{6}$ react with aqueous ammonia at room temperature to give in high yield the ipso-substitution products, 10 -aminocolchicide $\mathbf{2}$ and 9 -aminoisocolchicide $\mathbf{8}$ respectively. ${ }^{11}$ We observed the same behaviour

Scheme 1 Reagents and conditions: i, NH_{3} liq., $-25^{\circ} \mathrm{C}$; ii, $\mathrm{KOH}(2 \mathrm{M}), \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}, 130{ }^{\circ} \mathrm{C}$; iii, $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{py}$, rt; v, $\mathrm{Ti}(\mathrm{OMe})_{4}, \mathrm{MeOH}, 10{ }^{\circ} \mathrm{C}$.
for $\mathbf{1}$ and $\mathbf{6}$ in liquid ammonia as solvent at $-25{ }^{\circ} \mathrm{C} .{ }^{7}$ In contrast, 9-tosyloxyisocolchicide ($R_{\mathrm{a}}, 7 S$)-9 gives a product of tele-substitution, 11-aminoisocolchicide 12, as a mixture of $\left(R_{\mathrm{a}}, 7 S\right)$ - and $\left(S_{\mathrm{a}}, 7 S\right)$-atropisomers. Although these could be separated into components ${ }^{7}$ suitable for the synthesis of the target compounds 11 and 13, the mixture also proved to be adequate in achieving this end (Scheme 1).

The regiospecific $\mathrm{C}(11)$ tele-substitution by NH_{3} with 9 (Scheme 1) may be attributed to two concurrent causes: i) the presence, in the cycloheptatrienone ring of $\mathbf{9}$, of a good nucleofuge and moderately activating group, like OTs, and ii) the low basicity and high H-nucleophilicity of ammonia. ${ }^{2,12}$ That the atropisomeric mixture of $\mathbf{1 2}$ undergoes hydrolysis in ethanolic-aqueous KOH , under the drastic Eschenmoser's conditions, ${ }^{13}$ to give 10 -hydroxyneocolchicide 15 (Scheme 1), can be imputed to the amide-like behaviour of $\mathbf{1 2}$ towards bases.

Pseudocolchicine $\mathbf{1 1}$ and neocolchicine $\mathbf{1 3}$ could be obtained as a $1: 1.7$ mixture by treating 10 -hydroxyneocolchicide $\mathbf{1 5}$ with diazomethane, albeit via a troublesome chromatographic separation that required HPLC procedures under reversed phase conditions (see Experimental section). It proved simpler to convert 15 with tosyl chloride in pyridine under standard conditions ${ }^{14}$ to the tosyloxy derivatives 16 and 17 , which were easily separated by TLC (Scheme 1); regiospecific methoxylation of $\mathbf{1 6}$ and $\mathbf{1 7}$ with $\mathrm{Ti}(\mathrm{OMe})_{4}$ in MeOH gave the target compounds 11 and 13. It should be noted that this reaction required more drastic conditions, and gave lower yields, than with the use of the higher titanium alkoxides, $\mathrm{Ti}(\mathrm{OR})_{4}-\mathrm{ROH}$ ($\mathrm{R}=\mathrm{Et}, \mathrm{Pr}^{i}, \mathrm{Bu}$). ${ }^{15,16}$

With both 11 and 13 a comparison could be carried out with the electronic absorption and CD spectra of colchicine $\mathbf{1}$ and isocolchicine $\mathbf{6}$. The UV and CD spectra are similar for 11 and 13, and for $\mathbf{1}^{11,17,18}$ and $\mathbf{6}^{11}$, while the spectral differences between the two pairs of compounds are remarkable. Thus, the intense absorption band centered at 310 nm for compounds $\mathbf{1 1}$ and 13 (ε ca. $10000 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$, Fig. 1, curves b and a , respectively), lies just where $\mathbf{1}$ and $\mathbf{6}$ show a weak absorption

Fig. $1 U V$ spectra: $\mathrm{a},\left(R_{\mathrm{a}}, 7 S\right)-13 ; \mathrm{b},\left(R_{\mathrm{a}}, 7 S\right)-11 ; \mathrm{A},\left(R_{\mathrm{a}}, 7 S\right)-\mathbf{1} ; \mathrm{B}$, $\left(R_{\mathrm{a}}, 7 S\right)-6 ; \mathrm{EtOH}, 4 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.
(ε ca. 1000, Fig. 1, curves A and B, respectively). The corresponding CD spectra reflect the above presence/absence of the absorption band at 310 nm (Fig. 2), implying vast electronic differences between the above two pairs of regioisomers. \dagger Similar observations concerning the UV and CD spectra apply to the corresponding pairs of tosylates $\mathbf{4}^{14}, \mathbf{9}^{14}$ and $\mathbf{1 6 , 1 7}$ (see Experimental section).
This spectral behaviour can be rationalized by imagining eight possible colchicinoids (Scheme 2, where the 1-, 2-, 3 -methoxy, and 7 -acetylamino groups are ignored, being
\dagger The signs of the dichroic bands indicate that the helicity of both $\mathbf{1 1}$ and $\mathbf{1 3}$ is the same for $\mathbf{1}$ and $\mathbf{6}$, that is $\left(R_{\mathrm{a}}\right)^{19}$ (see Fig. 2). The J coupling pattern for $7-\mathrm{H}$ is another criterion used in assigning the helicity of colchicinoids. ${ }^{7}$ This proton in both $\mathbf{1 1}$ and $\mathbf{1 3}$ appears as a td (see Experimental section), while the $\left(S_{\mathrm{a}}\right)$ helicity is characterized by a dd signal for the 7-H proton. ${ }^{7}$

A

Group II

a

B

C

b

C

D
D

Experimental

Mps were measured on a Kofler apparatus and are uncorrected UV-visible spectra were recorded on a Perkin-Elmer Hitachi 200 instrument. CD spectra were recorded on a Jasco J-40AS spectrometer. IR spectra were measured on a Perkin-Elmer 1725X FT-IR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra at 200 MHz and ${ }^{13} \mathrm{C}$ NMR spectra at 50 MHz were determined on a Varian BB200, using deuteriochloroform solutions (tetramethylsilane as the internal reference). J-Values are given in Hz. Mass spectra were taken on a Kratos MS 80 spectrometer. TLC: preparative $20 \times 20 \mathrm{~cm}$ silica gel Analtech plates. Reversedphase HPLC: Spherisorb RP18 $25 \times 0.8 \mathrm{~cm}$, flux $3 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. Reaction yields were not optimised.

Synthesis of $\left(R_{\mathrm{a}}, 7 S\right)$-12 and $\left(S_{\mathrm{a}}, 7 S\right)-12^{7}$

Liquid ammonia ($c a .10 \mathrm{~g}$) was added at $-25{ }^{\circ} \mathrm{C}$ to $9-$ tosyloxyisocolchicide $9^{14}(0.244 \mathrm{~g}, 0.452 \mathrm{mmol})$ in a $50 \mathrm{~cm}^{3}$ Hastelloy bomb. The temperature was allowed to rise to rt over 6 h . The semisolid residue obtained after evaporation of the ammonia was taken up with dichloromethane and filtered. Evaporation of the solvent gave a $1: 1.7$ mixture of $\left(S_{\mathrm{a}}, 7 S\right) \mathbf{- 1 2}$ and $\left(R_{\mathrm{a}}, 7 S\right)-12(0.136 \mathrm{~g}, 0.354 \mathrm{mmol}$, overall yield $78 \%)$ as yellow semisolid material. Initially, this was subjected to HPLC (eluant $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} 1: 4$), to give $\left(S_{\mathrm{a}}, 7 S\right)$-12 and $\left(R_{\mathrm{a}}, 7 S\right)$ - $\mathbf{1 2}$ at $t_{\mathrm{R}} 22.5$ and 26 min respectively. The process was repeated more conveniently without separating the two atropisomers.

Data for $\left(R_{\mathrm{a}}, 7 S\right)$-12: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 410\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\mathrm{cm}^{-1} 3.87$), 309 (4.12), 247 (4.15); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.41\left(1 \mathrm{H}, \mathrm{d}, J_{8,9}\right.$ $12.4,8-\mathrm{H}), 7.20\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 12.4,9-\mathrm{H}\right), 7.12(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 6.80$ $\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{NH}, 7} 6.2, \mathrm{NH}\right), 6.64(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.0\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$, $4.60\left(1 \mathrm{H}, \mathrm{td}, J_{7, \mathrm{NH}} 6.2, J_{7, \text { pro- } R-6} 5.3, J_{7, \text { pro-S-6 }} 12.2,7-\mathrm{H}\right), 3.94(3 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{OMe}), 3.90(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 3.63(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 2.6-2.2$ $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.2-1.8(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}) ;$ $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 175.5(\mathrm{~s}), 169.9(\mathrm{~s}), 154.7(\mathrm{~s}), 153.7(\mathrm{~s}), 151.0(\mathrm{~s})$, 143.3 (s), 142.0 (s), 135.7 (s), 134.9 (s), 132.3 (d), 130.0 (d), 127.2 (s$), 118.1$ (d), 107.5 (d), 61.9 (q), 56.4 (q), 51.8 (d, C-7), 38.6 (t), 30.4 (t), 23.4 (q); m / z (EI) 384.1 ($\mathrm{M}^{+}, 11.5$), 356.1 (M - CO, 18.5), $368.2\left(\mathrm{M}-\mathrm{NH}_{2}, 0.6\right)\left(\mathrm{HRMS}\right.$: found $\mathrm{M}^{+} 384.16829 \pm$ $0.00023 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires 384.16852).

Data for $\left(S_{\mathrm{a}}, 7 S\right)$-12: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 409\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\mathrm{cm}^{-1} 3.81$), 311 (4.06), 250 (4.12); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.37\left(1 \mathrm{H}, \mathrm{d}, J_{8,9}\right.$ $12.1,8-\mathrm{H}), 7.14\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 12.1,9-\mathrm{H}\right), 7.02(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 4.97$ $\left(1 \mathrm{H}, \mathrm{d}, J_{7, \mathrm{NH}} 7.0, \mathrm{NH}\right), 6.65(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.95\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{NH}_{2}\right)$, $5.03\left(1 \mathrm{H}, \mathrm{dd}, J_{7, \mathrm{NH}} 7.0, J_{7, \text { pro } R-6} 7.1,7-\mathrm{H}\right), 3.95(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{OMe})$, $3.93(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 3.61(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 2.7-2.4(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$, 2.2-1.8 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), $1.63(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 175.9(\mathrm{~s})$, 168.2 (s), 154.7 (s), 154.1 (s), 151.0 (s), 143.5 (s), 140.1 (d), 135.5 (d), 135.4 (s), 130.3 (d), 128.5 (d), 118.4 (d), 107.6 (d), 61.6 (q), 56.4 (q), 55.4 (d, C-7), 40.8 (t), 30.4 (t), 23.5 (q); m/z (EI) 384.1 $\left(\mathrm{M}^{+}, 6.4\right) 356.1(\mathrm{M}-\mathrm{CO}, 10.0), 368.2\left(\mathrm{M}-\mathrm{NH}_{2}, 0.5\right)$ (HRMS: found $\mathrm{M}^{+} 384.16826 \pm 0.00026 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires 384.16852).

Synthesis of ($R_{\mathrm{a}}, 7 S$)- N -(10-hydroxy-1,2,3-trimethoxy-11-oxo-5,6,7,11-tetrahydrobenzo[a]heptalen-7-yl)acetamide, 10-hydroxyneocolchicide, 15

A mixture of $\left(R_{\mathrm{a}}, 7 S\right) \mathbf{- 1 2}$ and $\left(S_{\mathrm{a}}, 7 S\right)-\mathbf{1 2}(0.537 \mathrm{~g}, 1.39 \mathrm{mmol})$, was dissolved in $20 \mathrm{~cm}^{3} \mathrm{EtOH}$ and $20 \mathrm{~cm}^{3} \mathrm{KOH}(2 \mathrm{M})$ were added under N_{2}. The resulting solution was heated at $130^{\circ} \mathrm{C}$ for 20 h . The cooled reaction mixture was acidified with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and extracted into chloroform. Evaporation of the dried organic extract, gave $0.213 \mathrm{~g}(0.55 \mathrm{mmol}, 39.7 \%$ yield $)$ of a light brown solid which was used without any further purification Mp 119-125 ${ }^{\circ} \mathrm{C}$ (Found C, $65.6 ; \mathrm{H}, 6.10 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}$ requires C, $65.44 ; \mathrm{H}, 6.01 \%) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 308\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 4.20), $385 \mathrm{sh}, 366 \mathrm{sh}, 345 \mathrm{sh} ; v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 1653,1595$, $1541 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.54(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 7.52(1 \mathrm{H}, \mathrm{d}, J 10.2,9-\mathrm{H})$, $7.35(1 \mathrm{H}, \mathrm{d}, J 10.2,8-\mathrm{H}), 6.54(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.2(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{NH})$,
$4.62(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.94,3.91$ and $3.66(9 \mathrm{H}$, three s, 1-, 2- and $3-\mathrm{OMe}), 2.6-2.2(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.2-1.8(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.03(3 \mathrm{H}$, $\mathrm{s}, \mathrm{MeCO}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 173.5,169.6,153.9,151.2,144.7,140.5$, 134.4, 132.9, 126.8, 125.6, 107.4, 61.8, 56.5, 52.5, 38.7, 30.3, 23.6; m/z (EI) 385 ($\mathrm{M}^{+}, 85$), 357 (M - CO, 90), 342 (M - Ac, 37), 314 ($\mathrm{M}-\mathrm{CO}-\mathrm{Ac}, 44$), $298\left(\mathrm{M}-\mathrm{CO}-\mathrm{AcNH}_{2}, 30\right)$.

Synthesis of ($R_{\mathrm{a}}, 7 \boldsymbol{7}$)-toluene-4-sulfonic acid 7-acetylamino-1,2,3-trimethoxy-11-oxo-5,6,7,11-tetrahydrobenzo[a]heptalen-10-yl ester, $\left(R_{\mathrm{a}}, 7 S\right)$-16 and $\left(R_{\mathrm{a}}, 7 S\right)$-toluene-4-sulfonic acid 7-acetylamino-1,2,3-trimethoxy-10-oxo-5,6,7,10-tetrahydro-benzo[a]heptalen-11-yl ester, $\left(R_{\mathrm{a}}, 7 S\right)$-17

10-Hydroxyneocolchicide $15(0.213 \mathrm{~g}, 0.55 \mathrm{mmol})$ was stirred with 0.115 g , $(0.6 \mathrm{mmol})$ of toluene- p-sulfonyl chloride in dry pyridine $(0.5 \mathrm{ml})$ for 24 h at rt . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to give a yellow semisolid mass which was treated by TLC $\left(\mathrm{CHCl}_{3}-\mathrm{MeCOMe} 3: 2\right)$. Extraction of a band at $R_{\mathrm{f}}=0.61$ gave $0.065 \mathrm{~g}(0.12 \mathrm{mmol}, 22 \%$ yield $)$ of $\left(R_{\mathrm{a}}, 7 S\right)-16$ as a yellow solid, $\mathrm{mp} 105-107^{\circ} \mathrm{C}$, while extraction of the spot at $R_{\mathrm{f}}=0.40$ gave $0.058 \mathrm{~g}(0.11 \mathrm{mmol}, 20 \%$ yield $)$ of $\left(R_{\mathrm{a}}, 7 S\right)-\mathbf{1 7}$ as a yellow solid, mp 110-113 ${ }^{\circ} \mathrm{C}$.

Data for $\left(R_{\mathrm{a}}, 7 S\right)$-16: (Found C, 62.1; H, 5.3. $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{8} \mathrm{~S}$ requires $\mathrm{C}, 62.33 ; \mathrm{H}, 5.42 \%)$; $\mathrm{CD}($ in EtOH$) / \mathrm{nm}\left(\Delta \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1}\right) 336(-8.6), 300(+2.0), 279(-1.8), 244(+16), 237$ (+17.6); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 312\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.08\right), 225$ (4.43); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1654,1626,1593,1559 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.94(2 \mathrm{H}, \mathrm{d}, J 8.0$, tosyl protons), $7.47(1 \mathrm{H}, \mathrm{d}, J 10.2,9-\mathrm{H}), 7.35$ $(2 \mathrm{H}, \mathrm{d}, J 8.0$, tosyl protons $), 7.31(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{d}$, $J 10.2,8-\mathrm{H}), 6.7(1 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{NH}), 6.51(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.54(1 \mathrm{H}$, $\left.\mathrm{td}, J_{7, \mathrm{NH}} 6.2, J_{7, \text { pro }-\mathrm{R}-6} 5.2, J_{7, \text { pro-S-6 }} 11.6,7-\mathrm{H}\right), 3.89(6 \mathrm{H}, \mathrm{s}$, $2-$ and $3-\mathrm{OMe}), 3.63(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 2.6-2.2(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.45$ ($3 \mathrm{H}, \mathrm{s}$, tosyl Me), 2.2-1.9 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 177.8,169.7,154.1,153.4,150.2,145.6,144.9$, $144.2,133.8,129.8,129.0,128.7,123.6,107.3,61.8,56.5$, $52.7,36.7,30.2,23.5,22.3 ; m / z$ (EI) M^{+}not observed, 385 $\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{SO}_{2}\right), 357\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{SO}_{2}-\mathrm{CO}\right)$.

Data for $\left(R_{\mathrm{a}}, 7 S\right)$-17: (Found C, 62.21; H, 5.3. $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{8} \mathrm{~S}$ requires $\mathrm{C}, 62.33 ; \mathrm{H}, 5.42 \%) ; \mathrm{CD}($ in EtOH$) / \mathrm{nm}\left(\Delta \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1}\right) 336(-13.6), \quad 294(+1.0), 254(+8.4), 232(+24.5)$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 323\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.13\right), 225$ (4.55); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1654,1624,1595,1560 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.93(2 \mathrm{H}$, d, $J 8.2$, tosyl protons), $7.52(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{d}, J 13.2$, $8-\mathrm{H}), 7.32$ ($2 \mathrm{H}, \mathrm{d}, J 8.2$, tosyl protons), $7.19(1 \mathrm{H}, \mathrm{d}, J 13.2$, $9-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{NH}), 4.50(1 \mathrm{H}, \mathrm{td}$, $\left.J_{7, \mathrm{NH}} 6.2, J_{7, \text { pro-R-6 }} 5.0, J_{7, \text { pro-S-6 }} 12,7-\mathrm{H}\right), 3.92(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{OMe}), 3.90$ $(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 3.71(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 2.6-2.2(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.42$ $(3 \mathrm{H}, \mathrm{s}$, tosyl Me), 2.2-1.9 (2H, m, 6-H), $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 178.5,169.9,154.4,152.2,151.1,145.8,145.3,141.7$, $139.5,137.7,135.4,135.1,133.5,129.7,128.6,125.0,107.7$, $62.0,61.8,56.6,52.6,39.0,30.3,23.5,22.3 ; m / z(E I) \mathrm{M}^{+}$not observed, $385\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{SO}_{2}\right), 357\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{SO}_{2}-\mathrm{CO}\right)$.

Synthesis of $\left(R_{\mathrm{a}}, 7 S\right)$-11 and $\left(R_{a}, 7 S\right)$-13

Excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in ether was added to a solution of 0.100 g of $\mathbf{1 5}$ $(0.26 \mathrm{mmol})$ in $2 \mathrm{~cm}^{3}$ of methylene chloride. After 1 h at rt the solvent was evaporated and the residue subjected to HPLC ($\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} 3: 7$). Two fractions were collected: fraction with $t_{\mathrm{R}}=6.5 \mathrm{~min}$ gave $130.034 \mathrm{~g}(0.086 \mathrm{mmol}, 33 \%$ yield $)$, while the fraction with $t_{\mathrm{R}}=7.0 \mathrm{~min}$ gave $11(0.058 \mathrm{~g}, 0.15 \mathrm{mmol}, 57 \%$ yield).

Data for $\left(R_{\mathrm{a}}, 7 S\right)$ - N-(1,2,3,11-tetramethoxy-10-oxo-5,6,7,10tetrahydrobenzo $[a]$ heptalen-7-yl)acetamide 11: colourless solid, $\operatorname{mp} 97-101{ }^{\circ} \mathrm{C} ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 380$ sh, 362 sh, $348 \mathrm{sh}, 308$ (log $\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.11$), 244 (4.33); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1655$, $1617,1596,1554 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40(1 \mathrm{H}, \mathrm{d}, J 12.2,8-\mathrm{H}), 7.27$ $(1 \mathrm{H}, \mathrm{d}, J 12.2,9-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 6.61(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.16$ $(1 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{NH}), 4.60\left(1 \mathrm{H}, \mathrm{td}, J_{7, \mathrm{NH}} 6.0, J_{7, \text { pro-R-6}} 6.6, J_{7, p r o-S-6}\right.$

12, 7-H), 3.98 (3H, s, 2-OMe), 3.94 (3H, s, 3-OMe), 3.92 ($3 \mathrm{H}, \mathrm{s}$, $11-\mathrm{OMe}), 3.70(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 2.6-2.2(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.2-1.8$ $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 179.6, 169.6, $162.5,154.1,151.3,141.8,139.4,138.8,135.9,135.0,132.7$, 118.4, 107.7, 62.2, 61.8, 56.6, 39.0, 30.5, 23.6; m/z (EI) $399.1\left(\mathrm{M}^{+}, 11.3 \%\right), 371(\mathrm{M}-\mathrm{CO}, 8.4), 356(\mathrm{M}-\mathrm{Ac}, 4.3), 340$ $\left(\mathrm{M}-\mathrm{AcNH}_{2}, 12.7\right), 328(\mathrm{M}-\mathrm{CO}-\mathrm{Ac}, 4.0), 312(\mathrm{M}-\mathrm{CO}-$ $\mathrm{AcNH}_{2}, 4.5$) (HRMS: found $\mathrm{M}^{+} 399.16735 \pm 0.00084$. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{6}$ requires 399.16819).

Data for $\left(R_{\mathrm{a}}, 7 S\right)$ - N-(1,2,3,10-tetramethoxy-11-oxo-5,6,7,11tetrahydrobenzo $[a]$ heptalen-7-yl)acetamide 13: colourless solid, $\mathrm{mp} 227-230{ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 372 \mathrm{sh}, 360 \mathrm{sh}, 348 \mathrm{sh}, 302$ ($\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.20$), 236 (4.31); $v_{\text {max }}($ Nujol $) / \mathrm{cm}^{-1} 1667$, $1612,1581,1526 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.45(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{d}$, $J 10.9,9-\mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{d}, J 10.9,8-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{d}, J 5, \mathrm{NH})$, $6.51(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.56\left(1 \mathrm{H}, \mathrm{td}, J_{7, \mathrm{NH}} 5.0, J_{7, p r o-R-6} 6, J_{7, p r o-S-6} 12.4\right.$, $7-\mathrm{H}), 3.96(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{OMe}), 3.90(6 \mathrm{H}, \mathrm{s}, 3-\mathrm{and} 10-\mathrm{OMe}), 3.63$ $(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 2.6-2.2(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.2-1.8(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 178.8,169.5,163.9,154.0$, 151.0, 144.8, 141.6, 140.3, 133.8, 125.4, 112.6, 107.2, 61.7, $56.5,52.3,37.3,30.3,23.6 ; m / z(E I) 399.1\left(\mathrm{M}^{+}, 11.9 \%\right), 371$ $(\mathrm{M}-\mathrm{CO}, 26.6), 356(\mathrm{M}-\mathrm{Ac}, 7.7), 340\left(\mathrm{M}-\mathrm{AcNH}_{2}, 8.2\right)$, $328(\mathrm{M}-\mathrm{CO}-\mathrm{Ac}, 8.5), 312\left(\mathrm{M}-\mathrm{CO}-\mathrm{AcNH}_{2}, 30.8\right)$ (HRMS: found $\mathrm{M}^{+} 399.16757 \pm 0.00062 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{6}$ requires 399.16819).

Synthesis of $\left(R_{a}, 7 S\right)$-13

To a solution of $\left(R_{\mathrm{a}}, 7 S\right) \mathbf{- 1 6}(0.061 \mathrm{~g}, 0.113 \mathrm{mmol})$ in $4 \mathrm{~cm}^{3}$ of MeOH , was added $\mathrm{Ti}(\mathrm{OMe})_{4}(0.182 \mathrm{~g}, 1.0 \mathrm{mmol})$ under N_{2}. The mixture was heated for 6.5 h at $105{ }^{\circ} \mathrm{C}$, then cooled, the solvent evaporated, and the residue treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. Evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a semisolid mass which was subjected to SiO_{2} TLC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{COCH}_{3} 2: 3$. The $R_{\mathrm{f}}=0.13$ band gave $13(0.020 \mathrm{~g}, 0.05 \mathrm{mmol}, 44.3 \%$ yield $)$.

Synthesis of ($\left.\boldsymbol{R}_{\mathrm{a}}, \mathbf{7 S}\right)$-11

Starting from $0.048 \mathrm{~g}(0.089 \mathrm{mmol})$ of 17 in $3 \mathrm{~cm}^{3} \mathrm{MeOH}$ and $0.146 \mathrm{~g}(0.84 \mathrm{mmol})$ of $\mathrm{Ti}(\mathrm{OMe})_{4}, 11(0.0064 \mathrm{~g}, 0.016 \mathrm{mmol}$, 18% yield) was obtained via the work up described in the previous case.

References

1 F. Pietra, Acc. Chem. Res., 1979, 12, 132.
2 M. Cavazza and F. Pietra, J. Chem. Soc., Perkin Trans. I, 1995, 2657.
3 L. Velluz and G. Muller, Bull. Soc. Chim. Fr., 1955, 198.
4 B. Danieli, G. Lesma, G. Palmisano and R. Riva, Helv. Chim. Acta, 1985, 68, 2173.
5 M. Cavazza and F. Pietra, J. Chem. Soc., Chem. Commun., 1994, 897.

6 M. Cavazza and F. Pietra, Z. Naturforsch., Teil B, 1996, 51, 1347.
7 M. Cavazza, M. Zandomeneghi and F. Pietra, Tetrahedron Lett., 2000, 41, 9129.
8 E. A. Pyles and S. Bane Hastie, J. Org. Chem., 1993, 58, 2751.
9 U. Berg, J. Deinum, P. Lincoln and J. Kvassman, Bioorg. Chem., 1991, 19, 53.
10 U. Berg, H. Bladh, C. Svensson and M. Wallin, Bioorg. Med. Chem. Lett., 1997, 7, 2771.
11 R. M. Horowitz and G. E. Ullyot, J. Am. Chem. Soc., 1952, 74, 587.
12 G. Biggi, F. Del Cima and F. Pietra, J. Am. Chem. Soc., 1973, 95, 7101.

13 J. Schreiber, W. Leimgruber, M. Pesaro, P. Schudel, T. Threlfall and A. Eschenmoser, Helv. Chim. Acta, 1961, 44, 540.

14 M. E. Staretz and S. B. Hastie, J. Org. Chem., 1991, 56, 428.
15 M. Cavazza and F. Pietra, Tetrahedron, 1998, 54, 14059.
16 P. Kouroupis, J. Kessler and H. J. Hansen, Helv. Chim. Acta, 1996, 79, 208.
17 S. B. Hastie and R. Rava, J. Am. Chem. Soc., 1989, 111, 6993.
18 A. Brossi, O. Boyè, A. Muzaffar, H. J. C. Yeh, V. Toome, B. B. Wegrzynski and C. George, FEBS Lett., 1990, 262, 5.

19 U. Berg and H. Bladh, Helv. Chim. Acta, 1999, 82, 323.
20 A. Muzaffar, A. Brossi, C. M. Lin and E. Hamel, J. Med. Chem., 1990, 33, 567.

